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LETTER TO THE EDITOR 

Topological properties of percolation clusters 

S Havlint and R Nossal 
Physical Sciences Laboratory, DCRT, National Institutes of Health, Bethesda MD 20205, 
USA 

Received 14 February 1984 

Abstract. Percolation properties, including the total cluster mass S, the shell mass B, and 
the linear geometrical size R,  are studied as a function of the topological ‘chemical distance’ 
parameter L. All critical exponents are shown to be related to an apparently new exponent 
C, defined by R - L’. Critical exponents are calculated exactly for percolation clusters on 
the Cayley tree (a model for 6~ percolation), for which S - L 2 ,  B - L, and R ’ -  L. For 
diffusion on such clusters one finds that L3 - f. Numerical estimates of the exponents are 
obtained for other dimensions. A conjecture which relates C to 0 and v is discussed. 

The structure of percolation clusters recently has been a subject of intensive investiga- 
tion (Stanley 1977, Mandelbrot 1982, Gefen er a1 1981, Alexander and Orbach 1982, 
Coniglio 1982, Ben-Avraham and Havlin 1982, Stanley and Coniglio 1983). Charac- 
teristic exponents such as the fractal dimensionality df and the fracton dimensionality 
d have been given particular attention. The first of these exponents, df, relates the mas? of 
a cluster, S to its spatial (i.e., geometrical) linear size, R, as S - Rdt .  The exponent d, in 
contrast, characterises a topological property of the cluster, namely, the number 
of distinct sites in the cluster, S,, visited by a random walk u p  to time 1, which is given 
by S,- 1”’. In this letter we investigate other topological quantities which characterise 
percolation clusters. 

We first introduce the notion of the ‘chemical distance’ L. In figure 1 we show an 
example of part of an infinite percolation cluster at criticality, grown on a triangular 
lattice by the method of Leath (1976) and Alexandrowicz (1980). Occupied sites of 
the cluster are designated by letters. Dots and blank spaces signify unoccupied sites. 
The ‘chemical distance’ between two occupied sites will be defined as follows. Suppose 
one arbitrarily chooses as a reference point the site designated by the asterisk in figure 
1. The occupied nearest neighbours of that site are designated by the letter ‘B’, and 
represent a ‘shell’ lying at chemical distance L =  1 from the reference site. The 
next-nearest-neighbour sites are designated by ‘C’ and constitute a shell at chemical 
distance L = 2 ,  and so forth. The following quantities are functions of L: B ( L )  is the 
number of occupied sites in the Lth shell, S ( L )  is the total number of such sites included 
in a sub-cluster bounded by the Lth shell, and R ( L )  is the radius of gyration of that 
sub-cluster. B ( L )  and S ( L )  are topological quantities since they do  not depend directly 
on the spatial distribution of the sites. 

Averages of the quantities B(L) ,  S ( L ) ,  and R ( L )  at the percolation threshold p E  
can be related as follows. Let us consider only the ensemble of clusters which contain 
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Figure 1. Example of a pan of an infinite cluster grown at criticality. The asterisk '*' is an 
arbitrary point in the cluster. Sites belonging to shells of successive chemical distance are 
designated by successive letters of the alphabet (starting with 'B'), and dots designate sites 
which were tested and found to be empty. The cluster was generated on a triangular lattice, 
obtained by taking points to lie on a square lattice and regarding sites along one of the 
diagonal directions as nearest neighbours. 

at least L shells (hereafter referred to as 'large' clusters). We assume that the ensemble 
averages B ( L ) ,  S ( L ) ,  and R ( L )  all vary as algebraic powers of L. The chemical distance 
exponent i is defined as 

Since 

d S l d L - B ,  and S - R d f ,  

it follows that 

(3) S( L )  - L% 3 L d L  

B ( L ) -  Lid,- '  E L d L - 1 .  (4) 

and 

Thus, the exponents for B ( L ) ,  s ( L ) ,  and R ( L )  all are related to two parameters, i and 
df. Note that, as a special case, these results hold for the infinite percolation cluster 
at criticality. 

The previous discussion concerned the case of clusters whose size is at least L 
shells. If clusters which had terminated at lower shell number also are included in 
the statistical ensemble, averages can be calculated (Stauffer 1979, Ben-Avraham and 
Havlin 1982) by using the known distribution for percolation cluster sizes P ' ( S ) -  SI-'. 
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For example, the mean ( S , )  (on ‘all’ clusters) is given as 

Another quantity of interest is P,, the probability that a cluster will consist of at  least 
L shells. This function is given as 

p,-R-P/Y-L-Pc/u I (8) 
which follows immediately from equations ( I )  and  (3) and the fact that the probability 
of a cluster being at least of size S is given as PL - 2: P’(S) - S2-‘. It is clear that 
quantities given in equations ( 9 4 7 )  can be obtained from analogous quantities in 
equations (1)-(3) simply by multiplying by the function given in equation (8), e.g., 

By using similar arguments we can calculate the average chemical distance of the 
clusters in the entire ensemble when p < pc. We observe that the average chemical 
distance ( L )  can be given as 

( S , )  = S( L)*P,. 

sc 

I p  - P c j P - Y : G .  (9) (L ) -  Ls’-‘- S : - T + l / d f i  - 
Using equation (9) and  the relationship ( L )  = L .  P,, we find that 

(10) i- I p  - P c l - u / G  

where is the ‘correlation chemical length’, i.e., the chemical distance associated with 
the correlation length 6. 

The exponents appearing in the above equations can be evaluated exactly for the 
case of percolation on the Cayley tree, which is believed to represent percolation 
clusters in six dimensions (de Gennes 1976). It can be shown that, because there is no 
correlation between the growing tips, in this case 

( B L ) =  1 .  ( 1  1) 
This result follows simply from the fact that, for an n-branched growth process at  
criticality, at  each branch tip the probability of growing a new branch is p = p c  = I / n  
(Harris 1983) where n = z - I ,  and z is the coordination number. Since for the Cayley 
tree it is known that df=4, P = I ,  and v =$ (Stauffer 1979), it follows from equation 
(6) that v’ = $. 

Several other interesting facts can be concluded from this result. On the population 
of large clusters, those whose shell number is L or greater (including the infinite cluster), 
one finds from equations (l)-(4) the relationships 

- 
R’- L, S( L )  - L*, B( L)  - L. (12) 

Because of the analogy between the Cayley tree and  six-dimensional percolation, the 
first of these relationships indicates that the spatial extent R in 6~ percolation clusters 
depends on the chemical distance L with the same exponent as a simple random walk. 
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We note that the expected number of sites in the Lth shell of an ensemble of large 
clusters, B ( L ) ,  varies linearly with L, which is consistent with the observation from 
equation (8) that Pr - 1 /  L and the fact that ( B L )  = 1. 

Another exponent of interest is the chemical distance diffusion exponent d k ,  which 
characterises the average chemical distance traversed in t steps by a random walk on 
the infinite percolation cluster, namely, 

Ld: - t. (13) 

dk = Gdw. (14) 

Using equation ( I )  and the spatial diffusion equation Rd" - t ,  it follows that 

Equation (14) is a general relationship which, when evaluated for a Cayley tree using 
the known value d, = 6 and the result obtained above, ; =+, yields the value dk = 3. 
This conclusion is supported by the numerical data shown in figure 2 .  Another closely 
related quantity is the number of distinct sites visited by a random walk, which can 
be calculated from equations (3), (13), an_d (14) to be S,  - t d L ' d :  - tdr'd* = t" '2 . Thus, 
it is seen that the topological exponent d can be expressed as a ratio of topological 
exponents d L / d k ,  in addition to the usual ratio of spatial exponents d,/d, (Alexander 
and Orbach 1982). 
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Figure 2.  Exponent for diffusion on percolation clusters on a Cayley tree, plotted against 
I/!. The extrapolated limit as  I + cc seems to be d k  = 3 .  Diffusion was calculated exactly 
on individual clusters for which the chemical distance was at least L = 200, using methods 
similar to those applied previously for diffusion on  exact fractals (Ben-Avraham a n d  Havlin 
1982). Results were averaged over a sample of 1000 configurations. 

We also have evaluated these exponents for other dimensions. Numerical results 
for B( L )  and ( BL)  for ZD percolation clusters formed on a triangular lattice at criticality 
are shown in figure 3. From the slopes of these curves we find from equations (4) and 
(6) that [ ;df - I ]  = 0.64* 0.02 and [ (d,  - p /  v); - 11 = 0.57 i 0.03. Using the known values 
(Stauffer 1979) p = 0.14, I/ =:, and d f =  1.89, we obtain = 0.87 *0.02 from the data of 
each of the curves. It is interesting to compare these results with those of Alexandrowicz 
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Figure 3. The average number of sites in the Lth shell B ( L )  (0) and ( E L )  (A), as a function 
of chemical distance L. Results shown are for 1000 clusters. 

(1980), who studied the growth of percolation clusters on hypercubic lattices. In  the 
latter study, the clusters are grown as successive shells, one shell per unit ‘time’; thus, 
the ‘time’ in Alexandrowicz’ study corresponds to the chemical distance L used in our 
work. The three seemingly independent exponents Y,, vl, and 7 defined by Alexan- 
drowicz (1980) correspond, respectively, to (df- /3/ v);, G, and v /  i, in our study (cf 
equations ( 5 ) ,  ( I ) ,  and  (9)), and therefore now are seen to depend on only one apparently 
new exponent, i;. Using data given by Alexandrowicz (1980) and known values for /3 
and v (Stauffer 1979, Stauffer er a1 1982), we have computed v’ for d = 3 ,  4 as well. 
Results are shown in table I .  

An interesting observation from the data in table 1 is the close correspondence 
between the values in the last two columns on the right. From those data we observe 
that, within the accuracy of the calculations, the following relationship between df, v, 
and v’ seems to be valid: 

d f =  l / v + l / v ’ .  (15) 

The implication of the latter relationship is that v’ is nor an  additional independent 
exponent but, rather, can be evaluated in terms of p and v. This would be in accord 

Table 1. Critical exponents for percolation clusters. 

I I X.‘ 0 l h  0 0 
2 I .89 I .33‘ 0.14‘ 0.87 * 0.02 0.64 * 0.02g 0.65 2 0.02 
3 2.49 0.88‘ 0.45‘ 0.74* 0.02d 0.83 * 0.02 0.83 x 0.02 
4 3.05 0.7‘ 0.65‘ 0.63 * 0.04d 0.93 * 0.04 0.9 I r 0.04 
6 4 112‘ l e  112 I 1 

Havlin et al (1983); ’ in d = I ,  R and L are equivalent; Stauffer et al (1982); Alexandrowicz (1980); 
e Stauffer (1979); deduced from values of y and U by Stauffer (1979); this value is consistent with results 
obtained by Pike and Stanley (1981) who found d ,  = 1.64i0.02.  
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with the generally accepted belief that all static geometrical properties of percolation 
clusters can be described in terms of two independent exponents. It follows from 
equations ( I ) ,  (4), and (15) that B - R”“ ,  which suggests that I /  v is a fractal index. 
Because l/v’ also is a fractal index, it seems that df is the sum of two fractal indices. 
A simple theoretical assumption which would yield equation ( 1  5) is that B - 1 / I p  - pCl 
for all d ;  from equations ( I )  and (4) and the relation R - I p - p c l - ”  one obtains 
j j -  I p  -pcl-+(:dr-l) , so that the aforementioned assumption immediately implies the 
relationship for the exponents given in equation (1 5 ) .  

We thank S Alexander, A Coniglio, J E Kiefer, H E Stanley, and G H Weiss for many 
useful discussions. S Alexander introduced us to the term ‘chemical distance’. 
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